3.812 \(\int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx\)

Optimal. Leaf size=116 \[ \frac {2 b \left (a^2+b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {6 a \left (a^2+5 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {8 a^2 b \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d}+\frac {2 a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))}{5 d} \]

[Out]

6/5*a*(a^2+5*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*b*
(a^2+b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*a^2*cos(
d*x+c)^(3/2)*(a+b*sec(d*x+c))*sin(d*x+c)/d+8/5*a^2*b*sin(d*x+c)*cos(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {4264, 3841, 4047, 3771, 2639, 4045, 2641} \[ \frac {2 b \left (a^2+b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {6 a \left (a^2+5 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {8 a^2 b \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d}+\frac {2 a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(5/2)*(a + b*Sec[c + d*x])^3,x]

[Out]

(6*a*(a^2 + 5*b^2)*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*b*(a^2 + b^2)*EllipticF[(c + d*x)/2, 2])/d + (8*a^2*b
*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(5*d) + (2*a^2*Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])*Sin[c + d*x])/(5*d)

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3841

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(a^2*C
ot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x]
)^(m - 3)*(d*Csc[e + f*x])^(n + 1)*Simp[a^2*b*(m - 2*n - 2) - a*(3*b^2*n + a^2*(n + 1))*Csc[e + f*x] - b*(b^2*
n + a^2*(m + n - 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2]
 && ((IntegerQ[m] && LtQ[n, -1]) || (IntegersQ[m + 1/2, 2*n] && LeQ[n, -1]))

Rule 4045

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e
 + f*x]*(b*Csc[e + f*x])^m)/(f*m), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 4047

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+b \sec (c+d x))^3}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{5 d}+\frac {1}{5} \left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {6 a^2 b+\frac {3}{2} a \left (a^2+5 b^2\right ) \sec (c+d x)+\frac {1}{2} b \left (a^2+5 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{5 d}+\frac {1}{5} \left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {6 a^2 b+\frac {1}{2} b \left (a^2+5 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx+\frac {1}{5} \left (3 a \left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {8 a^2 b \sqrt {\cos (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a^2 \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{5 d}+\frac {1}{5} \left (3 a \left (a^2+5 b^2\right )\right ) \int \sqrt {\cos (c+d x)} \, dx+\left (b \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx\\ &=\frac {6 a \left (a^2+5 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {8 a^2 b \sqrt {\cos (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a^2 \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{5 d}+\left (b \left (a^2+b^2\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {6 a \left (a^2+5 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 b \left (a^2+b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a^2 b \sqrt {\cos (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a^2 \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.42, size = 84, normalized size = 0.72 \[ \frac {2 \left (3 \left (a^3+5 a b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+5 b \left (a^2+b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+a^2 \sin (c+d x) \sqrt {\cos (c+d x)} (a \cos (c+d x)+5 b)\right )}{5 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(5/2)*(a + b*Sec[c + d*x])^3,x]

[Out]

(2*(3*(a^3 + 5*a*b^2)*EllipticE[(c + d*x)/2, 2] + 5*b*(a^2 + b^2)*EllipticF[(c + d*x)/2, 2] + a^2*Sqrt[Cos[c +
 d*x]]*(5*b + a*Cos[c + d*x])*Sin[c + d*x]))/(5*d)

________________________________________________________________________________________

fricas [F]  time = 0.48, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (b^{3} \cos \left (d x + c\right )^{2} \sec \left (d x + c\right )^{3} + 3 \, a b^{2} \cos \left (d x + c\right )^{2} \sec \left (d x + c\right )^{2} + 3 \, a^{2} b \cos \left (d x + c\right )^{2} \sec \left (d x + c\right ) + a^{3} \cos \left (d x + c\right )^{2}\right )} \sqrt {\cos \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

integral((b^3*cos(d*x + c)^2*sec(d*x + c)^3 + 3*a*b^2*cos(d*x + c)^2*sec(d*x + c)^2 + 3*a^2*b*cos(d*x + c)^2*s
ec(d*x + c) + a^3*cos(d*x + c)^2)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sec \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {5}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^3*cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

maple [B]  time = 3.70, size = 376, normalized size = 3.24 \[ -\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-8 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (8 a^{3}+20 a^{2} b \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-2 a^{3}-10 a^{2} b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2} b +5 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{3}-3 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{3}-15 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a \,b^{2}\right )}{5 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))^3,x)

[Out]

-2/5*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*a^3*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+(
8*a^3+20*a^2*b)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-2*a^3-10*a^2*b)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2
*c)+5*a^2*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)
)+5*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^3-15*(si
n(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2)/(-2*si
n(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sec \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {5}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^3*cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

mupad [B]  time = 1.18, size = 125, normalized size = 1.08 \[ \frac {2\,b^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,a\,b^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,a^2\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,a^2\,b\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{d}-\frac {2\,a^3\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(5/2)*(a + b/cos(c + d*x))^3,x)

[Out]

(2*b^3*ellipticF(c/2 + (d*x)/2, 2))/d + (6*a*b^2*ellipticE(c/2 + (d*x)/2, 2))/d + (2*a^2*b*ellipticF(c/2 + (d*
x)/2, 2))/d + (2*a^2*b*cos(c + d*x)^(1/2)*sin(c + d*x))/d - (2*a^3*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([
1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)*(a+b*sec(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________